
Multi-layer Human-in-the-loop Service Management
Utilizing Rule-based Policies and Set Theoretic

Expressions
S. Yousaf Shah†, Christos Parizas∗, Geeth De Mel§, Boleslaw Szymanski†, Alun Preece∗, Dominic Harries‡, John Ibbotson‡

Stephen Pipes‡
†Rensselaer Polytechnic Institute, Department of Computer Science, Troy, NY, USA, Email: {shahs9, szymab}@rpi.edu
∗School of Computer Science and Informatics Cardiff University, UK, Email: {C.Parizas, A.D.Preece}@cs.cardiff.ac.uk

§IBM T.J. Watson Research Center, Yorktown Heights, NY, USA, Email: {grdemel@us.ibm.com}
‡IBM Hursley, UK, Email: {dharries, jbibbotson, pipessd}@uk.ibm.com

Abstract— Services management in large-scale service ori-
ented sensor networks carries many challenges. Such networks
consist of heterogeneous assets that host a variety of services
and maintain perpetual information flow/fusion between hard
(i.e. sensing devices, distributed databases) and soft (human)
resources. Regulating access to assets and services using policies
has proven to be effective in many ways especially when resources
are affiliated with multiple parties in coalition formations. In
this paper, we propose a two-layer novel service management
mechanism: the first layer directly interfaces with humans and is
based on controlled natural language (CNL) technologies; and the
second interacts with the system level policies and are interpreted
utilizing Restriction Set Theoretic Expressions (RSTE). The
RSTE layer is responsible for the policy evaluation by limiting
the resources available for service compositions pertaining to a
user’s requests, and facilitates the reporting to the upper-layer
of over-restrictive policy constraints that may hinder the service
compositions process. Finally, we describe a policy relaxation
mechanism between coalition collaborating parties, when services
are not configurable given the strict policies currently enforced.
The relaxation mechanism exploits the ability of RSTE to flow
information from service composition to upper layer, which
interacts with human-in-the-loop in a transparent way.

I. INTRODUCTION

Coalitions are formed to achieve common goals, be they
humanitarian or combat in nature. The key to success in
these goals is the improved situational awareness obtained —
in a given context — by fusing available information. Such
information is gathered by applying multiple analytics (atomic
or composite) over the data gathered from the resources
deployed in the field. However, access to these data and
analytics are controlled by means of policies. This is due to
the inherent need in coalitions to protect individual interests
whilst collaborating with others. Typically, there are two types
of policies: high-level policies governing the interaction among
organizations, and low-level policies governing the system
level constraints, especially in-terms of access control to re-
sources and resulting services. High-level policies are authored

*Portions of this paper are taken from: Shah, S. Yousaf, Boleslaw
Szymanski. Dynamic Policy Enforcement using Restriction Set Theo-
retic Expressions (RSTE). IEEE Military Communications (MilCom),
2014, To appear in conference proceedings [1].

by human with some assistance from automated mechanisms
to detect violations, conflicts, and so forth. Therefore, we need
a human friendly but machine interpretable representation for
such policies so that humans could author them whilst being
assisted by intelligent mechanisms which can guide them
through the process. On the other hand, low-level policies are
system level constraints which need be enforced and evaluated
in a rapid manner to perform particular tasks, and requires
little or no reasoning. This yields to the need of having a
representation that can assists in efficient policy enforcement.

In this paper, we propose an initial framework to address
both these policy layers: (a) a high-level policy specification
layer to negotiate and relax policy constraints which hinders
the information gathering; and (b) a low-level policy speci-
fication and enforcement layer which instantiate the required
resources to achieve goals. The high-level policies are repre-
sented and reasoned with a controlled natural language (CNL)
— specifically ITA Controlled English — which makes the
communication across organizations transparent and human
scrutable whilst the system level policies are represented and
enforced utilizing a set theocratic approach called Restriction
Set Theoretic Expressions (RSTE). It is important to note that
inability to perform a particular request at the lower-level
may have resulted due to a higher-lever policy constraint.
Thus, it is important to have mechanisms to communicate
such issues to the organization level so that appropriate policy
negotiations and relaxations can take place in support of the
goals. Therefore, the goal of the proposed framework is to
provide mechanisms to relax, and transform high-level user-
specified policies into low-level controls and vice versa.

In order to illustrate our approach, in this paper, we consider
a system for service configuration in a mobile sensor network.
Each service hosted in the sensor network produces one or
more outputs and require zero or more inputs from other
services, thus composite services are hierarchical in nature
forming a workflow graph for data processing. In a coalition
environment, services are owned by different collaborating
organizations or partners, these services are hosted on sensor
nodes owned by different partners. Policy makers define policy
rules to restrict or allow access to the resources in the network.

Users make requests for services with certain requirements, the
requests are handled by the configuration system and based on
policies and users’ authorization corresponding services are
configured for the requestor.

The remainder of the paper is organized as follows. In
Section II, we present the related work. Section III presents
the high level policy representation. In Section IV, we provide
detailed description of RSTE and Section V presents the
implementation details on how RSTE can be implemented
using a relational database. Section VI provides an illustrative
scenario which describes the management of a service based
system, while section VII describes the service management
flow between the two layers. Finally, Section VIII concludes
the paper and discusses future work.

II. RELATED WORK

Asset sharing and management in coalition environments
has been studied in the past and various techniques for
resource allocation have be suggested by researchers [2], [3].
Policy enforcement and management techniques for different
computing paradigms have been proposed in the past [4], [5],
[6]. In [5], [6], more programatic and standardized approaches
have been proposed, however, the policy description and
representation is closer to computer programs and is therefore
not very friendly to non-technical users. Goal oriented and
formal logic based frameworks have also been proposed in
the past for policy management [7], but their capabilities are
limited by the underlaying OWL version. Other semantic rep-
resentation based frameworks such as [8], [9] have also been
proposed. Deontic logic based approaches to address para-
doxes in Standard Deontic Logic (SDL) have been proposed in
[10], however, our approach differs from deontic logic based
approaches and other formal logic based approaches such
as [11], [7] in policy representation as well as enforcement
because the latter are not feasible for dynamic compositions
of services. In [12] attribute based policy enforcement has
been investigated, but this approach also utilizes [5] and has
a more programming approach for policy representation, also
it does not support backtracking and suggestions for policy
relaxation.

III. CE EXPRESSED POLICIES

To implement the presentation layer of the service man-
agement mechanism which interfaces with a human-in-the-
loop, we utilize a form of CNL known as ITA Controlled
English (CE) [13]. Since we have not tested and compared
the understandability of CE with the understandability of other
lower level well-known policy languages such as Ponder and
CIM-SPL through formal experiments, we cannot safely claim
that CE is a user friendlier representation than its predecessors.
However, there is related experimentation work reported in
the literature [14], [15], [16] for testing the friendliness of
CNL languages similar to CE to humans and comparing them
with formal languages such as OWL. The results of these
experiments in all cases led to the conclusion that CNL can do

better compared to formal languages especially in situations
where users have little or no technical training.

As described in [17] a policy representation using CE
complies with the essential requirements of a policy language
in that a) it is machine processable b) it is sufficiently
expressive to capture policies across different domains, c) it
supports decisions utilizing its reasoner and d) it is amenable
for analysis for the detection and resolution of conflicting
relationships among policies.

In order to explain the multi-layer service management
mechanism and how the two policy layers interact with each
other, we describe the capabilities of the presentation layer
and the basic components of the CE expressed policies. Being
a first-order logic representation, CE is capable of defining
domain models as a set of concepts, their properties and
the relationships between them. It also supports multiple
inheritance and can structure hierarchies of concepts. Once the
domain model is built, it then can be instantiated by asserting
facts.

We use CE for expressing high-level, attribute-based policy
rules following the “if - condition - then - action” form.
If the conditions are valid, then the embedded CE reasoner
defines what activities are required by the system in order
to comply with the enforced policies. The IBM Controlled
Natural Language Processing Environment1 or briefly CE
Store is a web application which provides an information-
processing environment within which human and machine
agents (i.e. Java coded entities) can develop and interact with
conceptual models described in CE. Within the CE Store,
different types of agents can decide what policies must be
applied in a given situation. Logical inference rules (i.e. policy
rules) can be described and executes using the pre-developed
conceptual models.

Policy rules expressed as CE are attributes of the pre-defined
domain models. Attributes are sets of concepts, their properties
and relationships that are used to describe the system being
managed through polices. Each policy rule consists of a
quadruple of grammatical blocks:

• Subject: specifies the entities (human/machine) which
interpret obligation policies or can access resources in
authorization policies (concepts and properties of the
conceptual model).

• Action: what must be performed for obligations and
what is permitted for authorization (relationships between
concepts of the conceptual model)

• Target: objects on which actions are to be performed
(concepts and properties of the conceptual model).

• Condition(s): boolean conditions under which the policy
is applied (Condition expressions are either CE sentences
statemens or expressions of the form α � β where α
and β are constants, i.e. concepts and properties of the
conceptual model or numerical values and � is any of
the symbols >, <, =, >, 6, 6=)

1https://www.ibm.com/developerworks/mydeveloperworks/
groups/service/html/communityview?communityUuid=
558d55b6-78b6-43e6-9c14-0792481e4532

In addition, each policy rule contains some descriptive
metadata such as the policy Id, the time and date of its creation
and its author.

We present a simple authorization policy rule expressed in
both CIM-SPL in Table I and CE in Table II to show the
different levels of human-friendliness of the two approaches.
The policies reflect a simple scenario in a coalition operation
context where an authorization policy which allows a user to
access a service if and only if the user and the asset are both
affiliated with the same partner.

Subject: user
Action: canAccess
Target: service
Condition: users affiliation == service’s affiliation

Any non-technical user with little knowledge of the domain
model can read and understand the policy rule implemented in
CE. The CE representation is not far away from the policy’s
plain-text explanation provided above. On the contrary, in
order for a user to understand the policy rule implemented
in CIM-SPL, some technical-programming skills are needed.

IV. THE RSTE LANGUAGE

In this section, we present a Restriction Set Theoretic
Expressions (RSTE) language that is simple yet expressive
enough to map high-level policies to lower level system
constraints so that lower level execution engines can produce
the desired result. This set language is understandable by both
higher layers of the framework dealing directly with the user
and low level system engines. Therefore, this language enables
a two way information flow from a user to the system level
objects and back. Figure 1 shows layered view of the three
major components of the system.

Fig. 1: Set Language is incorporated as layer between Presen-
tation layer and Application

The Dynamic Service Configuration/Composition layer is
responsible for producing policy enforced, low cost composite
services based on user requirements. This layer deals with
the input/output matching of different services as well as
spatial relevancy constraints to produce composite services
that are cost effective and geo-spatially relevant to the user’s
interests. In cases when this layer fails to produce a service
configuration as requested by the user, it notifies the Controlled
Natural Language for Policy Management via RSTE layer

about the need for appropriate actions. The Dynamic Service
Configuration/Composition layer accesses resources that are
policy constrained by the RSTE layer, therefore this layer
considers only resources that are accessible by the requesting
user in compliance with policies. If the resources are too scarce
for service composition, it generates an output message that
is sent to the presentation layer.

A. The Semantics and Operations of RSTE Language

In this section, we define RSTE operations and semantics
for RSTE sets. A request for service is represented by
the SREQ set and its corresponding service response is
represented by SRes. Following are the sets used by RSTE
for representing assets, policies, requests/response and users.
Alongside these sets we define various set operations, such
as Union, Intersection, Subtraction, Cardinality, that are
performed on these sets to produce a restricted set of assets
which is then provided to the system layer for configuration.

Service Set = SS= {{ ServiceName,NodeId,
GeoSpatialCoverage,Capabilities, Ownership}}

Node Set = NS = {{ NodeId, Ownership, Location,
Conditions, Permissions}}

Service Request Set = SREQ = {{ RequestId, UserId,
ServiceName, Capabilities, Properties, Restrictions}}

Policy Set = PS = {{PolicyId, ServiceOwnership,
ServiceName, Conditions, UserAffiliation,
Restrictions, Action}}

User Set = US ={{UserId, UserName, UserAffiliation,
Role, UserProperties}}

RSTE Response Set = RRS= {{ ServiceName, NodeId,
GeoSpatialCoverage, ServiceCapabilities, ServiceOwnership,
PolicyId, PolicyConditions, UserAffiliation, PolicyRestric-
tions, RequestId, UserId, SReqCapabilities, SReqRestrictions,
Action}}

Service Response Set = SRes = {{ RequestId, Logs,
ReturnValue, Failures}}

B. Definitions of the Sets

1) Service Set (SS): This set represents a snapshot of the
available services. It is subset of all the services hosted
in the asset database. During the set operations this set is
filtered based on policies and restrictions applied by the
user.

2) Node Set: This set represents nodes that host member
services of SS. It is used to access detailed information
about the infrastructure hosting the service and will be
used as needed.

3) Service Request Set: This set describes service requests
made by users.

TABLE I: CIM-SPL representation

Condition
{

subject.affiliation() == target.affiliation()
}
Decision
{

canAccess.allow()
}

TABLE II: CE representation

if
(the service S is affiliated with the partner P) and
(the user U is affiliated with the partner P)

then
(the user U canAccess the service S)

.

TABLE III: Service Set

Set Element Name Description
Service Name Name of the service, e.g., SERVICE-1
NodeId Unique ID of node hosting the service
GeoSpatialCoverage Geospatial coverage provided by the service
Capabilities Capabilities provided by the service, e.g,

{<Sensor, Video>, <Resolution, HD>}
Ownership Organization that owns the service, e.g.,

CW, FredFarm.

TABLE IV: Node Set

Set Element Name Description
NodeId Unique ID of node hosting the service
Ownership Organization that owns the node, e.g., CW,

FredFarm.
Location Physical Location of the Node, e.g., <

LAT,LONG,ALT >
Conditions Conditions that applies to usage of the

Node.
Permissions Permissions on this node

4) Policy Set: The Policy Set represents policies that need
to be applied to the SS using various RSTE operations.
It captures various other aspects of the policies (e.g.,
restrictions) along with conditions and actions.

5) User Set: The User Set describes users of the network.
Each user has certain properties as well as an associated
organization. The UserId enables the set to access more
detailed information about the user from the detailed
assets database in case they are needed. This set is primar-
ily used for policy validation through RSTE operations.
Various conditions are matched based on the user profile
before authorizing a user to access services.

6) RSTE Response Set: The RSTE Response Set is the set
that is supplied to the system layer along with the Service
Request Set (SREQ) for final service configuration. It con-
tains services that fulfill the policy and user requirements.

7) Service Response Set: The Service Response Set is pri-
marily for feedback purposes. It is supplied to the CNL
Layer in order to be presented to the user or to negoti-
ate/relax policies.

C. The RSTE Operations

The RSTE operations are like normal Set Operations but
they can also be performed based on a specific condition
(which can be imposed on set members) which is checked in
the corresponding sets. Consider two sets A and B, members

TABLE V: Service Request Set

Set Element Name Description
RequestId Unique ID of the service requests to distin-

guish different requests.
UserId Unique ID of the user who requested the

service.
ServiceName Name of the service that has been request.
Capabilities Capabilities that are required by the service,

e.g., High resolution video
Properties Configuration properties of the service, e.g.,

{< ModeofOperation,Distributed >
}

Restrictions Restrictions on the requested service, e.g.,
{< Ownership, CW >}

TABLE VI: Policy Set

Set Element Name Description
PolicyId Unique ID of a policy
ServiceOwnership Owner organization of the service affected

by the policy, e.g, FredFarm.
ServiceName Name of the service affected by the policy.
Conditions Conditions on the use of the service, e.g.,

{#service instances < 5}
UserAffiliation Affiliation of the user requesting the service,

e.g., CW or FredFarm
Restrictions Restrictions on the use of the service, e.g.,

{< Role, FarmOwner >}
Action Access to service based on the policy, i.e.,

Allow or Deny

of these sets are also sets with same semantics. Let {e-1,e-
2,e-3} be the semantics of sets A and B.
A = {{1, 2, 3}, {a, b, c}}
B = {{1, 5, 10}, {e, f, g}, {a, x, y}, {a, b, c}}

1) Union (∪) The union operation combines two sets into
one. An union operation is defined as,
A ∪B = {x : x ∈ A or x ∈ B}
A union with a condition ν can be written as,
(A ∪B)ν = {x : x ∈ A or x ∈ B and ν = true}
A simple union of the two sets will be as follows,
A∪B = {{1, 2, 3}, {a, b, c}, {a, x, y}, {1, 5, 10}, {e, f, g}}
A union operation defined on a condition “ν : (A.e-
1=B.e-1)”, produces following set,
(A ∪B)ν = {{1, 2, 3}, {1, 5, 10}, {a, b, c}, {a, x, y}}

2) Intersection (∩) The intersection of two sets results
into a set with common members among the sets.An
intersection operation is defined as,
A ∩B = {x : x ∈ A and x ∈ B}
An intersection with a condition ν is written as,
(A ∩B)ν = {x : x ∈ A and x ∈ B and ν = true}

TABLE VII: User Set

Set Element Name Description
UserId Unique ID of a user.
UserName Name of the user.
UserAffiliation Affiliated organization of the user, e.g., CW,

FredFarm
Role Role of the user in organization or in a

mission, e.g., < Role, Investigator >
UserProperties Other properties of the user, e.g.,

< SkillSet, Expert >

TABLE VIII: RSTE Respnse Set

Set Element Name Description
Service Name Name of the service, e.g., SERVICE-1
NodeId Unique ID of node hosting the service
GeoSpatialCoverage Geospatial coverage provided by the service
ServiceCapabilities Capabilities provided by the service, e.g.,

{<Sensor, Video>, <Resolution, HD>}
ServiceOwnership Organization that owns the service, e.g.,

CW, FredFarm.
PolicyId ID of policy applied to this service.
PolicyConditions Conditions from policy applied to this ser-

vice.
UserAffiliation Affiliation of the user, e.g., CW, FredFarm.
PolicyRestrictions Restrictions specified by policy.
RequestId ID of the user’s request.
UserId ID of the user of this service.
SReqCapabilities Capabilities requested in the Service Re-

quest
SReqRestrictions Restrictions specified in the Service Re-

quest.
Action Authorization action of policy on this ser-

vice.

A simple union of the two sets is,
A ∩B = {{a, b, c}}
An union operation defined on a condition “ν : (A.e-
1=1)”, produces an empty set.
(A ∩B)ν = {}

3) Difference (−) The difference or subtraction is the rela-
tive complement of set B in A. The difference operation
is defined as,
A−B = {x : x ∈ A and x 6∈ B}
A difference operation with a condition ν is written as,
(A−B)ν = {x : x ∈ A and x 6∈ B and ν = true}
A simple difference of the two sets will be as follows,
B −A = {{1, 5, 10}, {e, f, g}, {a, x, y}}
A difference operation defined on a condition “ν : (A.e-
1=a)”, produces set.
(B −A)ν = {{a, x, y}}

4) Cardinality (| |) Cardinality of a set gives the size of a
set. In above example, |A| = 2 and |B| = 4.

D. Operations for Policy Restrictions

First we need to identify policies that apply to a particular
user, then we will be able to find out which services a
specific user is authorized to access subject to conditions
and restrictions. Moreover, there may be services that are not
policy enforced and therefore available to all the users to use.
In order to find policies that need to be applied to a service

TABLE IX: Service Response Set

Set Element Name Description
RequestId Unique ID of the service request
Logs Any logs produced by the service configu-

ration at the system level.
ReturnValue Exit state of the service configuration, e.g,

0,1,-1.
Failures In case of failed configuration, reason of

failure.

configuration request, we apply series of operations to the
policy set (PS).

1) PS1 = (PS ∩ US)ν ν = UserAffiliation
2) PS2 = (PS1 ∩ US)ν ν = Role ∧ UserProperties
3) SSPolicyEnforced = (SS ∩ PS)ν

ν = ServiceName ∧ ServiceOwnership
4) SSPolicyAllowed = (PS2 ∪ SSPolicyEnforced)ν

ν = ServiceName ∧Ownership
Now we find all those services that have no restrictions

on them or there is no policy defined to restrict them. These
services are available to all the users. To find services with no
policy restrictions, we perform following operations.

5) SSNoPolicyEnforced = (SS − SSPolicyEnforced)
6) SSAllAllowedServices = (SSPolicyAllowed ∪

SSNoPolicyEnforced)
7) SS1 = (SSAllAllowedServices ∪ SREQ)ν

ν = Capabilities
8) RSTE SRes = SS1 Process based on restrictions

and conditions

V. RSTE IMPLEMENTATION

We have implemented the prototype of RSTE language using
a relational database. The Relational Algebra in relational
databases provides a natural support for RSTE sets and opera-
tions, therefore the capabilities of relational databases can be
used for an efficient implementation of RSTE. The sets in the
language and tables in a relational database are analogous. We
represent every set by a corresponding table. We then perform
different operations on the tables using relational algebra and
create views for intermediate steps. These views are then
systematically processed to produce other views and finally the
view that represents the RSTE Response Set which is further
processed before providing it to the service configuration layer.
For some of the operations shown in section IV-D, we have
created “Views” in the database, whereas the operations that
deal with a temporal requirement or that need more fine grain
processing e.g., Step-6, are done via post-processing on the
RSTE Response Set.

When a service request is received from the user, it is
represented by the SREQ set and a corresponding entry is made
in the database table. The views automatically get updated
and set of all allowed services are filtered out. Now, if the
user has defined any specific restrictions or there are policies
related to the user requesting a service, further processing is
done via code after which allowed services are provided to
the Application Layer for service configuration. For certain

services or users, very restrictive sharing policies may be
defined by the policy makers. Such overly restrictive policies
limit the services available for configuration and these services
might not be sufficient for a successful configuration leading
to failure in meeting the user’s request. In such cases, the
RSTE uses a backtracking mechanism to find out condition(s)
that can be relaxed in order to produce a configuration. The
condition(s) are then sent to the policy management layer for
policy negotiation. When such a condition is relaxed in the
policy, the resources are immediately available to the user and
services can then be configured to enforce the updated policy.

A. RSTE Backtracking

Policies specified by policy makers might be very restrictive
which may constrain resources necessary for service config-
uration. In a very restrictive case, operations performed in
step by step policy application by RSTE may lead to empty
sets or empty views in our implementation. Which means
that there are no services available for configuration. At any
such step where we detect an empty set we back track to
previous step and negate the conditions to see if that leads
to a non-empty set. If so we can suggest this negation to
CE layer as relaxation for polices involved. In case there are
more than one conditions applied at a particular step, each
condition is negated separately and the resultant set is checked
for not being empty, this way relaxation can be performed at
more granular level and only over-restrictive conditions will
be negotiated/relaxed.

Figure 2 shows the backtracking mechanism in the RSTE
implementation. As shown in the figure 2, when condition
“C4” of the policy is applied at “Step4” all services are filtered
out yielding an empty set; at this stage the policy enforcement
backtracks and applies negotiation of condition “C4” to go to
“Step4N”. If at this stage the result set is not empty then
condition “C4” is restricting the solution and it is propagated
to Presentation Layer for policy negotiation.

VI. VIGNETTE AND ANALYSIS

We provide an illustrative walkthrough using a vignette
which describes the management of a service based system
that monitors the water quality within a geographic area.
The aim of the managed system is to provide intelligence
to decision makers for detecting and responding to water
contamination incidents at early stages in order to effectively
reduce its consequences. We use the steps of the vignette to
illustrate the interaction between the high-level, presentation
layer policy rules expressed in CE and the system layer
policies expressed in RSTE while managing a mixture of
heterogenous and distributed open source and hard sensing
resources. The involving parties in the vignette are:

• Water Company (CW): responsible for monitoring pro-
cessing and disseminating water within the geographic
area

• Individual owners: water consumers who have their own
sensing devices deployed on water distribution for private
water monitoring (e.g. farmers)

Fig. 2: Backtracking in for policy relaxation in case of overly
restricted policies

• Twitter users: water consumers
There are two services deployed by CW for monitoring and

responding to water contamination incidents.
Composite Service S1 - Twitter analysis. Is an open source

sensing service that performs a real time content analysis of
tweets by users tweeting from the geographic area of interest.
It is an inexpensive service that performs 24/7.

Composite Service S2 - Smart sensor water monitoring.
Is a sensor data collection and analysis service. The smart
sensors where S2 partially runs on are owned and operated by
CW and are spread throughout the water distribution network.
They are chemical sensors (i.e. analytical devices that can
provide information about the chemical composition of water)
that sample, measure and analyze a dozen of water quality pa-
rameters, which are then disseminated via 3G cellular network
to the CW control room. The water sensing infrastructure is
augmented by a number of additional sensors owned by private
individuals (e.g. farmers) who collect data from water sources
on their land but do not normally make the collected data
available to any party such as the CW.

As mentioned before the behavior of the system is managed
through policies. The policies declare what actions the system
services are obliged to do and what resources they are allowed
or prohibited to access. We present only a small subset of these
policies in the timeline steps below.

A. Vignette timeline steps

Step 1: Composite Service S1 performs real time tweets
analysis and increases the counter CNT every time the word
“water” is mentioned in a tweet’s body, recording also its
geolocation information. Composite Service S2 collects dis-
tributed sensing data every 1 hour.

Step 2: Composite Service S1 detects a high number of
suspicious tweets, it changes the operation status from normal
to critical and triggers Service S2 with different policies which

now require it to be executed every 5 minutes. Composite
Service S2 uses only devices owned by CW.

Step 3: The increased sampling rate reveals contamination
levels outside the normal range from some of the services in
S2. Composite Service S2 attempts to increase the coverage of
the area by including services owned by private individuals but
owners’ privacy policies restrict the services being accessed,
thus Composite Service S2 fails.

Policy Rule 1 below is an authorization policy rule, authored
by individual owner Fred and expressed in CE which declares
his strict access policy as explained above. According to it
only the owner of the sensing device (i.e. Fred) can access the
water monitoring service that run on it.

Rule 1
if
(there is a service named Service1) and
(the user U owns the service Service1)
and
(the user U is affiliated with ’CW-Fred’) and
(the user U has the value ’Fred’ as name)
then
(the user U can access service Service1).

Step 4: The Service Composition component defines which
policy/ies is/are restricting composition, and backtracks them
by negating conditions.

Step 5: Relaxed RSTE represented policy/ies is/are inter-
preted in CE and passed to the individuals asking them to
approve in order for Composite Service S2 to be deployed.

Policy Rule 1’ below is the relaxed version of the restricted
Policy Rule 1 after applying the RSTE Backtrack mechanism
on it. Rule 1’ after negating its fourth condition (the user U
has the value ’Fred’ as name) allows any user affiliated with
’CW-Fred’ (i.e. Water company and individual owner Fred)
to access Service1. Composite Service S2 utilizing devices
owned by user Fred can now access enough resources in order
to be implemented.

Rule 1'
if
(there is a service named Service1) and
(the user U owns the service Service1)
and
(the user U is affiliated with ’CW-Fred’)
then
(the user U can access service Service1).

VII. CE - RSTE COUPLING

The key data that must be synchronized between the CE
and RSTE layers is the list of policies operating in the system.
For each policy in the CE store, there is a corresponding row
('1-1'assignment) in the RSTE Policy Set table. Policies are
authored in CE, so a one-way mapping from CE to RSTE is
required.

To enable more complex policy decisions to take place at
the CE level, other data – such as service and user instances
– may be synchronized from the relevant RSTE tables or an
external repository. This mechanism is beyond the scope of
this paper.

The CE representation of policy described in Section III
contains all the necessary features for an equivalent represen-
tation in the RSTE schema, as shown in Table X.

TABLE X: Policy Mapping from CE to RSTE

CE Policy RSTE field
Policy ID PolicyId
Subject UserAffiliation
Action Action
Target ServiceName
Conditions Service Ownership, Restrictions

As it is mentioned in section III, CE Store is a web appli-
cation which provides an information processing environment
within which Java coded agents can develop and interact with
existing CE-based concepts. To enable the communication and
thus the management flow from interface to system layer and
back, we exploit this ability. The CE agent running in the CE
environment, directly reads the list of CE represented policies
operating in the system (i.e. policy blocks such as Subject
and Action) and utilizing JDBC APIs, updates the data in the
RSTE relational database table. The CE agent can also write
CE sentences and associated concepts and instances within the
CE environment and this way we can establish both top-to-
bottom and bottom-to-top communication between high and
low layer. When restricted policies are identified at the RSTE
layer the agent gets a notification, then negates accordingly
the respective conditions of the CE represented policy rule
and pushes it back to the user for consideration.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a two-layer novel policy based
service management model consisting of: the human interface
layer, which utilizes the CE controlled natural language en-
vironment, and the system level policy layer which is imple-
mented using Restriction Set Theoretic Expressions (RSTE).
We briefly describe the capabilities of the interface layer, we
provide detailed description of RSTE and we presents the
implementation details of the RSTE language using Relational
Database and various Relational Algebra operations. We then
provide an illustrative scenario which describes the manage-
ment of a service based system and the service management
flow between the two layers. Finally, we describe the ability
of the proposed model to report any restricted policies by
proposing a policy relaxation to the user by negating policy
condition through a backtracking routine when services are
not implementable.

In future, we aim to perform detailed evaluation of the
proposed model, measuring its efficiency as a holistic multi-
layer service management approach. Meaning the performance
evaluation of policies’ analysis at the high level and he query
based, RSTE expressed layer performance evaluation as a
decision maker, policy evaluator and policy enforcement en-
abler when dealing with huge amount, multi-partner authored
policies. Finally, the user friendly, CE based policy layer and
its rich, ontology based semantics will be utilized for the

development of context aware, sophisticated, interest-based
negotiation algorithms, having the human in the loop involved.

ACKNOWLEDGMENT

This research was sponsored by US Army Research labora-
tory and the UK Ministry of Defence and was accomplished
under Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the au-
thors, and should not be interpreted as representing the official
policies, either expressed or implied, of the US Army Research
Laboratory, the U.S. Government, the UK Ministry of Defense,
or the UK Government. The US and UK Governments are
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] S. Y. Shah and B. Szymanski, “Dynamic policy enforcement using
restriction set theoretic expressions (rste),” in IEEE Conference on
Military Communications (MilCom), 2014. IEEE, 2014, p. To appear.

[2] T. Pham, G. H. Cirincione, D. Verma, and G. Pearson, “Intelligence,
surveillance, and reconnaissance fusion for coalition operations,” in
Information Fusion, 2008 11th International Conference on. IEEE,
2008, pp. 1–8.

[3] A. Preece, T. Norman, G. de Mel, D. Pizzocaro, M. Sensoy, and T. Pham,
“Agilely assigning sensing assets to mission tasks in a coalition context,”
IEEE Intelligent Systems, vol. 28, no. 1, pp. 57–63, 2013.

[4] G. Karjoth, “Access control with ibm tivoli access manager,” ACM
Transactions on Information and System Security (TISSEC), vol. 6, no. 2,
pp. 232–257, 2003.

[5] Ibm research, policy management library. [Online].
Available: https://www.ibm.com/developerworks/community/
groups/service\\/html/communityview?communityUuid=
ed556565-1d91-4289-94ae-213df1340350

[6] J. Lobo, “Cim simplified policy language (cim-spl),” Specification
DSP0231 v1. 0.0 a, Distributed Management Task Force (DMTF),
vol. 10, 2007.

[7] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, and
A. L. Lafuente, “Using linear temporal model checking for goal-oriented
policy refinement frameworks,” in Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on. IEEE, 2005,
pp. 181–190.

[8] M. Sensoy, T. J. Norman, W. W. Vasconcelos, and K. Sycara, “Owl-
polar: A framework for semantic policy representation and reasoning,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 12, pp. 148–160, 2012.

[9] S. A. Chun, V. Atluri, and N. R. Adam, “Using semantics for policy-
based web service composition,” Distributed and Parallel Databases,
vol. 18, no. 1, pp. 37–64, 2005.

[10] H. Prakken and M. Sergot, “Dyadic deontic logic and contrary-to-duty
obligations,” in Defeasible deontic logic. Springer, 1997, pp. 223–262.

[11] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, “A goal-based
approach to policy refinement,” in Policies for Distributed Systems and
Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE International
Workshop on. IEEE, 2004, pp. 229–239.

[12] R. Dilmaghani, S. Geyik, K. Grueneberg, J. Lobo, S. Y. Shah, B. K.
Szymanski, and P. Zerfos, “Policy-aware service composition in sensor
networks,” in Services Computing (SCC), 2012 IEEE Ninth International
Conference on. IEEE, 2012, pp. 186–193.

[13] D. Mott, “Summary of controlled english,” ITACS, 2010.
[14] A. Bernstein and E. Kaufmann, “Gino - a guided input natural language

ontology editor,” 2006.
[15] G. Hart, M. Johnson, and C. Dolbear, “Rabbit: Developing a control

natural language for authoring ontologies,” 2008.
[16] T. Kuhn, “An evaluation framework for controlled natural languages,”

2010.
[17] C. Parizas, D. Pizzocaro, A. Preece, and P. Zerfos, “Managing isr sharing

policies at the network edge using controlled english,” 2013.

